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SUMMARY

Feeding behavior is often separated into homeostatic
and hedonic components. Hedonic feeding, which
can be triggered by visual or olfactory food cues,
involves brain regions that play a role in reward and
motivation, while homeostatic feeding is thought to
be under the control of circulating hormones acting
primarily on the hypothalamus. Ghrelin is a peptide
hormone secreted by the gut that causes hunger
and food consumption. Here, we showthat ghrelin ad-
ministered intravenously to healthy volunteers during
functional magnetic resonance imaging increased the
neural response to food pictures in regions of the
brain, including the amygdala, orbitofrontal cortex,
anterior insula, and striatum, implicated in encoding
the incentive value of food cues. The effects of ghrelin
on the amygdala and OFC response were correlated
with self-rated hunger ratings. This demonstrates
that metabolic signals such as ghrelin may favor
food consumption by enhancing the hedonic and
incentive responses to food-related cues.

INTRODUCTION

The presence of food, and the anticipation of pleasure it could

provide, are potent triggers to feeding. This hedonic feeding be-

havior can be described as nonhomeostatic in that it occurs in

the absence of nutritional or caloric deficiency. While nonhomeo-

static feeding may have once provided an adaptive advantage to

humans, in our plentiful environment it is likely a significant cause

of obesity and its associated morbidity. Homeostatic feeding regu-

lation mediatedby thehypothalamus iswell described (Saper etal.,

2002); however, factors other than internal energy status also influ-

ence food intake.For instance, nutrientconsumption is significantly

influenced by external cues such as visual food stimuli. In animals,

the behavioral response to such stimuli is mediated by specific

neurons in the orbitofrontal cortex (OFC), amygdala, and striatum

(Holland and Gallagher, 2004; Rolls, 1994), which form part of a

mesolimbic reward system that is implicated in motivated behav-

iors (Cardinal et al., 2002). It has been suggested that while the hy-

pothalamus primarily regulates the homeostatic drive to eat, these

other neural circuits integrate environmental and emotional factors

to control the ‘‘hedonic’’ drive. Nonetheless, to influence behavior,

homeostatic signals may access reward-related brain areas.
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Ghrelin is a 28 amino acid peptide synthesized in the gastroin-

testinal tract that acts as a homeostatic signal involved in the

brain-gut regulation of feeding (Kojima et al., 1999). Ghrelin ad-

ministration increases food intake and adiposity in animals (Na-

kazato et al., 2001; Tschop et al., 2000). The preprandial rise and

postprandial fall in plasma ghrelin levels in humans suggest that

it is a hunger signal that promotes meal initiation (Cummings

et al., 2001). Administration of ghrelin to lean and obese subjects

significantly increases energy consumed from a free-choice buf-

fet, relative to placebo (Druce et al., 2005; Wren et al., 2001).

Overall, acute and chronic nutritional states seem to influence

endogenous levels of the peptide.

It is well established that ghrelin activates the hypothalamic

NPY/AgRP orexigenic pathway (Nakazato et al., 2001), where

ghrelin receptors are densely concentrated. However, ghrelin

also has specific effects on many brain regions implicated in

reward and motivation, including the ventral tegmental area

(VTA), nucleus accumbens, amygdala, and hippocampus (Abi-

zaid et al., 2006; Carlini et al., 2004; Diano et al., 2006). The

VTA and hippocampus express ghrelin receptors (Zigman

et al., 2006), and direct injections into these regions as well

as the amygdala lead to measurable changes at the neuronal

and behavioral levels. Hence, it is possible that, in addition

to its role as a metabolic signal for nutrient intake, ghrelin may

modulate the incentive and hedonic aspects of ingestive

behavior.

Here, we present evidence that ghrelin influences the respon-

siveness of brain regions involved in processing food cues in hu-

mans. Using functional magnetic resonance imaging (fMRI), we

measured the cerebral response to food and non-food (scenery)

images following single-blinded ghrelin infusions (1 mg/kg) (Fig-

ure 1). Twenty nonobese subjects were tested 3 hr after ingestion

of a standardized meal. Twelve subjects viewed pictures before

and after ghrelin administration (control/ghrelin group), and eight

subjects viewed the same pictures in two identical blocks with-

out receiving ghrelin (control/control group). All subjects were

told they might receive ghrelin. Ghrelin increased the response

to food pictures in amygdala, OFC, insula, visual areas, and stria-

tum. These regions encode the salience and the hedonic and in-

centive value of visual cues. This effect likely accounts for the

ability of ghrelin to trigger and promote feeding.

RESULTS

Biochemical Data
All subjects had normal blood glucose prior to the scan. In the

group that received ghrelin there was a significant increase in
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Figure 1. Overview of the Protocol

(A) The fMRI session was 3 hr post-breakfast.

(B) Three 5 min functional runs with images were presented during each of the two blocks. In the ghrelin study, two ghrelin infusions (G1 and G2, 0.5 mg/kg each over

1 min, 15 min apart) were administered between the blocks. Subjects did not know whether or when ghrelin would be administered via the intravenous. The control

study was identical except that no ghrelin was administered. Visual analog scales (VAS) assessing mood and appetite were administered at four time points.

(C) Each run comprised 15 stimuli (half food, half scenes). Images were presented for 5 s followed by a 15 s fixation cross. Food and scenery images were presented

randomly.
plasma growth hormone (pre-scan ± standard deviation [SD]:

1.0 ± 1.2 mg/l; post-scan: 62.7 ± 16.6 mg/l; p < 0.001), which is

an expected consequence of the ghrelin infusions. In the con-

trol/control group there was also a significant increase in plasma

growth hormone, but the effect was much smaller than in the

ghrelin group (pre-scan: 0.14 ± 0.08 mg/l; post-scan: 4.99 ±

4.24 mg/l; t = 3.02, p = 0.02). Insulin levels did not change in either

the control/ghrelin group (pre-scan: 37.0 ± 21.7 pmol/l; post-

scan: 30.2 ± 16.2 pmol/l; p = 0.24) or the control/control group

(pre-scan: 33.2 ± 12.30 pmol/l; post-scan: 23.5 ± 12.18 pmol/l;

t = 1.71, p = 0.13).

Behavioral Data
In the control/ghrelin group there was a significant increase in the

subjective ratings (mean ± standard error of the mean [SEM]) for
hunger and borderline increases for irritable and nauseous in the

ghrelin relative to the control condition (hunger: control: 5.5 ±

0.6, ghrelin: 8.3 ± 0.4, t = 4.91, p < 0.001; irritable: control:

3.0 ± 0.5, ghrelin: 4.2 ± 0.7, t = 2.74, p = 0.02; nauseous: control:

1.3 ± 0.5, ghrelin: 2.4 ± 0.8, t = 2.68, p = 0.02; bored: control: 4.1 ±

0.6, ghrelin: 5.1 ± 0.6, t = 1.45, p = 0.18).

In the control/control group, however, the subjective rating for

hunger did not change between the two blocks (hunger: control

1: 5.9 ± 0.68, control 2: 6.4 ± 0.83, t = 1.08, p = 0.32). There were

increases of borderline significance in the subjective ratings for

irritable and bored in the second relative to the first block of

images (irritable: control 1: 3.5 ± 0.83, control 2: 5.0 ± 1.22, t =

2.38, p = 0.05; bored: control 1: 4.9 ± 0.66, control 2: 6.5 ± 0.86,

t = 3.36, p = 0.01). Nausea levels did not change (nauseous: con-

trol 1: 1.9 ± 0.63, control 2: 2.97 ± 0.94, t = 1.44, p = 0.19).
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The food pictures were presented to the subjects a second

time, after the scan outside the scanner. Food items presented

in the ghrelin condition were more often recognized than those

displayed in the control condition (mean ± SD: 88.8% ± 7.3%

compared to 81.8% ± 10.8%, t = 2.90, p = 0.01). There was no

difference in the hedonic rating of the pictures viewed in the

ghrelin versus the control condition (t = 0.73, p = 0.48). Note

that there was no measurement of hedonic rating at the time

of scanning, however, so we cannot say whether ghrelin af-

fected the perceived pleasantness of the food pictures during

the scan.

In the control/control group there was no difference in the he-

donic ratings of the pictures viewed in the two control conditions

(t = 0.81, p = 0.45) nor any difference in the recognition of food

items presented in the two control blocks (control 1: 84.1% ±

3.3%, control 2: 84.2% ± 5.3%, t = 0.026, p = 0.98).

Neuroimaging Data: Control/Ghrelin Group
Neural activation associated with food stimuli was examined via

subtraction of the scenery response (Table 1). In both the

control and ghrelin states, visual areas in the parietal and occip-

ital cortex were activated. However, the amygdala (bilaterally),

right hippocampus, and left pulvinar were more responsive to

food than scenery pictures only during the ghrelin condition.

The anterior and mid-dorsal insula were also activated bilater-

ally in the ghrelin condition (Figure 2, Table 1). Extraction of

the blood oxygen level-dependent (BOLD) effect sizes from

peak voxels identified in this contrast confirmed these findings

(Figure 3). There was a statistically significant effect of ghrelin

on the response in reward-related regions (bilateral amygdala,

left OFC, right substantia nigra (SN)/VTA, left caudate, and right

hippocampus), anterior insular cortex (bilateral mid-dorsal and

ventral insula), and visual areas (including pulvinar and fusiform

gyrus).

A t map of the food minus scenery contrast for all scans

(ghrelin and control combined) was also generated. Significant

activation was detected in bilateral caudolateral OFC, piriform

cortex (olfactory area), and ventral pallidum, in addition to the

aforementioned areas (Table 2).

To ensure that ghrelin did not alter the response to scenery

pictures, scenery images were contrasted to the blank screen

stimulus. Bilateral activation was observed in several occipital

areas, namely the cuneus, fusiform, lingual, and middle occipital

gyri, as well as in the pulvinar and parahippocampal gyrus.

Activation was not different between the ghrelin and control

conditions.

To determine whether the ghrelin effect observed here could

play a role in promoting feeding we correlated the fMRI signal

(the effect size from the general linear model) in the food minus

scenery contrast with self-report measures. We found that

the increase in activation due to ghrelin correlated with self-

reported hunger during the ghrelin scans in bilateral amygdala,

left OFC, and left pulvinar (p < 0.05, Figure 4). Ghrelin’s effect

on amygdala activation was also correlated with its effect on

the left OFC (p = 0.06, Spearman’s correlation) and the left

pulvinar (p = 0.03, Figure 5). Finally, right insula activation corre-

lated positively with recognition scores for the ghrelin pictures

(p = 0.05).
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Neuroimaging Data: Control/Control Group
In order to explore the possibility that the results in the group that

received ghrelin were due to order effects, we subsequently

recruited an additional eight subjects who underwent the same

paradigm with the exception that they only received normal

saline rather than ghrelin. The two scanning blocks are referred

to as control 1 and control 2. Neural activation associated with

food stimuli was examined via subtraction of the scenery re-

sponse. Regions belonging to significant clusters (p < 0.05, cor-

rected for multiple comparisons) were identified. In control 2,

several visual areas including the bilateral fusiform and occipital

gyrus and left inferior parietal lobule were activated. Only the

left inferior occipital gyrus was activated in the control 1.

Table 1. Food Minus Scenery Contrast for Ghrelin and Control

Conditions

Ghrelin Control

Region t stat x y z t stat x y z

Orbitofrontal

cortex

L 3.82 �36 30 �6

Inferior/middle

frontal gyrus

(6/44)

R 5.26 50 6 30 5.43 48 10 30

L 4.75 �52 2 32 5.28 �44 4 32

Precentral

gyrus

L 3.52 �50 4 4

Amygdala R 4.92 20 �10 �8

L 4.48 �18 �10 �16

Hippocampus R 4.13 32 �10 �30

Insula (anterior) R 4.24 42 8 �6

L 3.84 �34 16 10 4.2 �34 20 8

Insula (mid) R 4.23 42 �6 10

L 5.92 �36 �12 14

Caudate L 3.59 �8 �2 12

Cuneus R 4.68 20 �100 4

L 4.77 �16 �100 �2

Fusiform gyrus R 7.22 42 �70 �12 5.67 46 �72 �12

L 8.64 �50 �66 �10 7.14 �34 �80 �14

Pulvinar L 4.27 �16 �36 2

Lingual gyrus R 5.18 18 �98 �4

L 3.6 �10 �96 �12

Inferior parietal

lobule

L 5.36 �42 �48 58 6.21 �46 �38 50

Middle occipital

gyrus

R 7.3 32 �90 6 4.91 38 �84 2

L 6.05 �26 �92 14 6.85 �48 �74 �6

Superior occipital

gyrus

L 5.53 �26 �76 30

Superior parietal

lobule

R 4.9 28 �58 56 5.4 32 �62 56

L 6.36 �20 �66 48 5.56 �32 �58 56

All peaks listed at p < 0.001 uncorrected with a minimum cluster extent of

100 mm3. For the visual areas the extent of activation was quite large.

When there is more than one peak within one functional region, only

the most statistically significant peak is listed. The x, y, z refer to the

coordinates in Montreal Neurological Institute space.
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Figure 2. Statistical Maps
Representative t maps for amygdala, fusiform gyrus, insula, pulvinar, and OFC regions. All images are from the food minus scenery contrast, ghrelin condition

(Table 1). The t maps are thresholded at t > 3. Arrows indicate the peak locations for each region.
Importantly, no significant activation in the amygdala, insula, pul-

vinar, hippocampus, caudate, or OFC was observed in either

control conditions, even when lowering the threshold to t = 2.5

(p = 0.005 uncorrected). Extraction of BOLD effect sizes using

peak voxel coordinates identified in the control/ghrelin group

confirmed that there was no difference in the neural activation

between controls 1 and 2 in the aforementioned regions (all

p > 0.1). A t map of the food minus scenery contrast for all scans

(control 1 and control 2 combined) was also generated. Activa-

tion was detected in visual areas, including bilateral fusiform

gyrus, and left insula (Table S2 available online). The peak voxel

coordinates observed in the fusiform gyrus and insula were also

used to extract the BOLD signal effect sizes in each of the two

control conditions. Again, paired t tests showed no difference

between the two blocks (Figure S3), confirming that the effects

observed in the ghrelin group were not due to the order of

conditions.

Finally, we generated a t map of the interaction effect between

the ghrelin/control group and the control/control group. There

was a significantly greater increase in BOLD response (food mi-

nus scenery) in the control/ghrelin than the control/control group

in the OFC, bilateral anterior insula, left mid-insula, left pulvinar,

right SN/VTA, and bilateral fusiform (Table S3). There were no

areas showing a greater increase in the control 2 minus control

1 blocks than in the ghrelin minus control blocks.

DISCUSSION

The cerebral response to food cues following ghrelin administra-

tion was increased in multiple areas, including the amygdala,

insula, OFC, and striatum, implicated in reward processing

and appetitive behavior (Figure 3, Table 1). Moreover, self-

reports of hunger were significantly increased in the ghrelin

versus the control condition and correlated positively with the

ghrelin-induced increase in cerebral activity in the amygdala,

OFC, and pulvinar (Figure 4). Finally, food pictures shown in

the ghrelin condition were more easily recalled than those
shown in the control condition. Importantly, these neural and

behavioral changes were not observed in the double control

experiment.

The brain regions reactive to ghrelin in this investigation play

a role in the hedonic and incentive evaluation of visual stimuli.

The amygdala is responsive to most biologically relevant stimuli

and is crucially involved in the coordination of appetitive behav-

iors (Baxter and Murray, 2002; Cardinal et al., 2002; Holland and

Gallagher, 2004). It is thought that the amygdala signals the cur-

rent hedonic value of a stimulus or object, via interactions with

the OFC (Holland and Gallagher, 2004), and that it increases

the salience of biologically relevant stimuli by interacting with

posterior visual areas (LaBar et al., 2001), such as the pulvinar

and fusiform gyrus. Consistent with this model, we found that

ghrelin’s effect on left amygdala activation correlated with its

effect on left OFC and left pulvinar activation (Figure 5).

Numerous studies in animals have shown that activity in amyg-

dala and OFC signals the current appetitive value of a food or

food cue (Baxter and Murray, 2002; Holland and Gallagher,

2004). Human imaging studies have confirmed this. When the

hedonic/motivational value of an olfactory or visual cue is mod-

ulated using pleasant or unpleasant verbal labels (de Araujo

et al., 2005), or by feeding an associated food to satiety (Gottfried

et al., 2003), activity in amygdala and OFC, at coordinates close

to the ones reported here, varies with pleasantness. The re-

sponse of the OFC to food ingestion also decreases as a food

is fed to satiety and its pleasantness decreases (Kringelbach

et al., 2003; Small et al., 2001). The OFC and amygdala also me-

diate the anticipation and receipt of a taste reward (O’Doherty

et al., 2002) and are additionally involved in the hunger-

enhanced memory of food cues (Morris and Dolan, 2001).

Correlated increases in the activity in the OFC and amygdala

would therefore be expected in conjunction with an increase in

hunger, as demonstrated here (Figure 4), and presumably

food consumption.

The anterior insula was also ghrelin responsive. This structure,

lying beneath the frontal operculum, includes the primary
Cell Metabolism 7, 400–409, May 2008 ª2008 Elsevier Inc. 403
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gustatory and visceral sensory cortex and participates in several

feeding-related functions (Scott and Plata-Salaman, 1999). In

human imaging studies the insula responds to the taste of food

(O’Doherty et al., 2002; Small et al., 2001) and to visual cues

Figure 3. Ghrelin Effect

Bar graph showing the BOLD effect (parameter estimates from the general lin-

ear model of food pictures minus scenery pictures) in the ghrelin and control

conditions for different regions identified in the categorical analysis. Error

bars represent the SD of the general linear model. All comparisons show a sig-

nificant effect of ghrelin (p < 0.0001, two-tailed), except for R occipital gyrus

(p = 0.0006) and R mid-dorsal insula (not significant). Abbreviations and MNI

coordinates: amygdala (right: 20, �10, �8; left: �18, �10, �16); OFC: orbito-

frontal cortex (�36, 30, �6); SN/VTA: substantia nigra, ventral tegmental area

(8, �16, �10); caudate (�8, �2, 12); hippocampus (32, �10, �30); Ins: insula

(left anterior: �34, 16, 10; left mid-dorsal: �36, �12, 14; right mid-ventral: 42,

8, �6; right mid-dorsal: 42, �6, 10); occipital gyrus (right: 40, �67, �15; left:

�51, �66, �10); left pulvinar (�16, �36, 2); left fusiform (�35, �60, �18).
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such as food pictures (LaBar et al., 2001; Simmons et al.,

2005; St-Onge et al., 2005) and restaurant menus (Hinton

et al., 2004), and this response varies with the subject’s desire

to eat (Hinton et al., 2004; Small et al., 2001; Tataranni et al.,

1999). Experiments with insula-lesioned rats show that the insu-

lar cortex functions in recalling changes in incentive value based

on motivational state (Balleine and Dickinson, 2000). Therefore,

like the amygdala and OFC, the anterior insula is involved in an-

ticipation of food rewards and hedonic evaluation of food stimuli.

The role of the anterior insula in incentive memory could account

for the positive correlation between ghrelin-induced insular acti-

vation and subsequent recognition scores for food pictures in

our study.

Table 2. Food Minus Scenery Contrast: Ghrelin and Control

Conditions Combined

Region t stat x y z

DLPFC L 5.1 �52 34 18

DLPFC R 3.89 54 30 18

OFC* L 4.23 �28 30 �10

OFC* R 3.81 25 28 �12

Insula (anterior) L 5.31 �34 20 8

Inferior frontal gyrus R 6.39 48 8 30

Medial frontal gyrus L 4.13 0 8 54

Piriform cortex* R 4.24 34 6 �14

Cingulate gyrus L 4.71 0 4 40

Inferior frontal gyrus L 6.38 �46 4 32

Insula (mid-dorsal) R 5.13 42 �6 10

Precentral gyrus L 4.42 �56 �6 42

Ventral pallidum R 4.77 18 �10 �8

Ventral pallidum* L 4.42 �24 �12 �10

Parahippocampal gyrus R 4.55 36 �28 �22

Inferior parietal lobule L 6.7 �46 �38 50

Inferior parietal lobule R 4.15 32 �44 44

Superior parietal lobule L 7.33 �32 �60 58

Superior parietal lobule R 6.79 28 �60 56

Superior parietal lobule L 6.29 �22 �66 50

Fusiform gyrus R 8.85 38 �68 �14

Middle occipital gyrus L 10 �50 �70 �10

Middle occipital gyrus R 7.81 44 �74 �10

Middle occipital gyrus L 5.03 �28 �74 28

Superior occipital gyrus R 3.41 30 �80 26

Inferior occipital gyrus R 8.25 40 �82 �8

Inferior occipital gyrus L 11.22 �40 �86 �8

Inferior occipital gyrus R 7.89 32 �90 0

Inferior occipital gyrus L 7.13 �28 �92 12

Inferior occipital gyrus L 7.95 �34 �94 0

Cuneus R 5.13 24 �98 2

Lingual gyrus L 5.08 �16 �98 �8

Lingual gyrus R 5.03 16 �98 �2

Cuneus L 4.86 �18 �100 �2

All p < 0.05 corrected except *p < 0.001 with a cluster size > 100 mm3. BA:

Brodmann area. OFC: orbitofrontal cortex. DLPFC: dorsolateral prefron-

tal cortex.
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Ghrelin also increased the response to food pictures of brain

areas involved in visual processing, attention, and memory.

The pulvinar and fusiform gyrus are specifically involved in

focused visual attention (Kastner et al., 2004; Petersen et al.,

1985; Vuilleumier and Driver, 2007), and fMRI experiments

show that the increased salience of behaviorally relevant or emo-

tionally arousing visual stimuli is mediated by an interaction of

amygdala, fusiform, and pulvinar (Vuilleumier and Driver, 2007;

Morris et al., 1997). We also found a ghrelin effect on the hippo-

campus, a structure that, along with the amygdala, is well known

to be involved in memory formation (LaBar and Cabeza, 2006;

McGaugh, 2004). Previous fMRI studies have shown activation

of these two regions in response to food cues during the hunger

state (LaBar et al., 2001; Morris and Dolan, 2001; St-Onge et al.,

2005). Moreover, in animals, ghrelin regulates hippocampal

Figure 4. Hunger Effect

Correlation between mean self-rating of hunger during the ghrelin scans and

the change in BOLD effect due to ghrelin (i.e., difference in parameter esti-

mates of food minus scenery for the ghrelin and control scans at the peak voxel

of this region). All regressions are p < 0.05 except for left amygdala (p = 0.12).
spine synapse density and long-term potentiation (Diano et al.,

2006) and enhances spatial learning and memory (Carlini et al.,

2002, 2004).

Finally, two dopaminergic regions, the striatum and SN/VTA,

were also modulated by ghrelin. These form the core of a reward

network involved in the processing of feeding-related stimuli

(O’Doherty et al., 2002; Small et al., 2001, 2003; Tataranni

et al., 1999; Volkow et al., 2002) and setting the motivational or

incentive properties of food cues (Berridge and Robinson,

1998). Local injections of ghrelin into the rodent VTA promote lo-

comotor activity, striatal dopamine release, and feeding (Abizaid

et al., 2006; Jerlhag et al., 2007), while systemically administered

ghrelin causes VTA dopamine neuron firing and simultaneous

feeding behavior (Abizaid et al., 2006).

Ghrelin therefore appears to modulate the response to food

cues of a neural network involved in the regulation of feeding

and, most importantly, in the appetitive response to food cues.

This appetitive response has several components: attention, an-

ticipation of pleasure, motivation to eat (hunger), consumption,

and memory for associated cues. Brain regions implicated in

all of these functions were modulated by ghrelin. How ghrelin

acts on the brain is not known, but several potential mechanisms

have been identified. First, peripheral ghrelin may act on ghrelin

receptors in the gut, which then relay information to the brain via

the vagus nerve (Date et al., 2002), although this pathway is not

Figure 5. Correlations with Amygdala

Change in food minus scenery effect size (ghrelin minus control) for the left

amygdala (x axis) and the left pulvinar and left OFC. Data were extracted

from the peak coordinates in the subtraction analyses. Correlations were

assessed using Spearman’s rho. The p values for the correlations were 0.03

(pulvinar) and 0.06 (OFC).
Cell Metabolism 7, 400–409, May 2008 ª2008 Elsevier Inc. 405
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necessary since total vagal deafferentation does not abolish the

orexigenic effects of peripherally administered ghrelin (Arnold

et al., 2006). This suggests that circulating ghrelin also acts

directly on the brain. A likely region mediating this effect is the hy-

pothalamus, where ghrelin increases the firing rate of NPY/AgRP

neurons in the arcuate nucleus (Nakazato et al., 2001). These

neurons in turn project directly and indirectly to the VTA and

amygdala (Kelley, 2004; Saper et al., 2002), where they act to

regulate feeding behavior. Circulating ghrelin may also act di-

rectly on the dopamine system. There are ghrelin receptors in

the VTA (Zigman et al., 2006) and peripheral ghrelin increases

VTA dopamine neuron firing, an effect that is blocked by intra-

VTA administration of a ghrelin receptor antagonist (Abizaid

et al., 2006). Abizaid et al. also provide evidence that ghrelin

increases the VTA response to appetitive stimuli. The effect of

ghrelin on the amygdala could be direct, as the amygdala

contains ghrelin-positive axon terminals (Cowley et al., 2003),

or indirect via the hypothalamus or the VTA, which sends dopa-

minergic projections to the amygdala (Moore and Bloom, 1978).

Note, however, that direct injection of ghrelin into the amygdala

failed to increase food intake in one study (Carlini et al., 2004).

Finally, the anatomical distribution of ghrelin receptors on

presynaptic sites suggests that the hormone acts mostly as

a neuromodulator, enhancing the response of neurons that con-

trol feeding (Cowley et al., 2003). Thus, while ghrelin itself

may not directly initiate feeding, it likely enhances the appetitive

response to food cues, as shown here.

We describe the effects of an orexigenic hormone, but two

recent fMRI studies have examined hormones that reduce food

intake. Leptin, when administered to two young individuals

with congenital leptin deficiency, reduced the neural response

to food pictures in the ventral striatum (Farooqi et al., 2007), an

area associated with reward processing. We did not find a ventral

striatal response to food pictures in our study, although two

functionally related regions, the SN/VTA and dorsal striatum,

were sensitive to ghrelin. Note that our results are not inconsis-

tent with those of Farooqi et al. since our subjects presumably

had normal leptin levels, which appear to suppress the ventral

striatal response to food pictures. Indeed, other fMRI studies

have similarly failed to show ventral striatal activation in re-

sponse to food pictures in healthy subjects (LaBar et al., 2001;

Simmons et al., 2005). Another study measured the brain re-

sponse to an infusion of PYY (Batterham et al., 2007), which is

anorexic when administered systemically. Despite the differ-

ences in experimental paradigms, there was considerable over-

lap between the regions identified in that study and ours, possi-

bly because PYY and ghrelin act on the same hypothalamic

neurons (although with opposite effects). The left caudolateral

OFC, SN/VTA, and left insula all showed a modulatory effect of

PYY infusion.

Our results can also be compared to findings in Prader-Willi

syndrome, a condition characterized by obesity, severe hyper-

phagia, and persistent elevations in ghrelin levels. In an fMRI

study, comparison of Prader-Willi patients to lean control

subjects demonstrated an abnormally elevated response to

food pictures, following a meal, in the amygdala, OFC, insula,

parahippocampal gyrus, and fusiform (Holsen et al., 2006). Our

results suggest that this represents an effect of ghrelin, which

remains elevated after eating in these patients.
406 Cell Metabolism 7, 400–409, May 2008 ª2008 Elsevier Inc.
A few limitations must be addressed. First, it was not possible

to counterbalance the control and ghrelin conditions, as ghrelin

administered during the first block would have still had effects

during a subsequent control block. We therefore performed

a control experiment (control/control group) to confirm that the

effects attributed to ghrelin were not merely due to scan order.

This second group of subjects was recruited after the first study

was completed, and their data were analyzed separately; how-

ever, the same scanner and analysis software were used. We

also provide data from a separate experiment that did not have

the potential confounding effect of order and that confirms our

findings (see Supplemental Data).

Second, we failed to see any hypothalamic activation in our

imaging data. The hypothalamus is densely populated with ghre-

lin receptors (Howard et al., 1996) and plays a crucial role in ghre-

lin-induced feeding behavior (Nakazato et al., 2001). It is possible

that its small size may have impeded the detection of a change

in BOLD signal. Note, however, that our study identified brain

regions responding to food pictures. It is very likely that the

hypothalamus affects the response of other brain areas to food

pictures without itself displaying a change in neuronal firing

when subjects view the pictures. There are also intrinsic limits

to the fMRI method that must be taken into account. The spatial

resolution of roughly 6 mm does not permit us to identify the

specific nuclei of the amygdala modulated by ghrelin. Moreover,

signal dropout in the medial OFC means that we cannot exclude

an effect in this region. Indeed, a study using positron emission

tomography, which does not suffer from signal loss in the OFC,

demonstrated that a large part of the medial OFC was involved

in the appetitive response to chocolate ingestion (Small et al.,

2001), along with the other regions identified in the current study.

We may therefore have underestimated the spatial extent of the

ghrelin effect in the OFC. Although we attribute the effects mea-

sured here to ghrelin, it is important to note that ghrelin causes

increased secretion of growth hormone, ACTH, cortisol, and

prolactin (Arvat et al., 2001), all of which may also act on the

brain. Finally, since only males were included in this investiga-

tion, comparable studies in females must be pursued as there

may be gender differences in food-related neural processing

(Uher et al., 2006).

EXPERIMENTAL PROCEDURES

Materials

Pharmaceutical-grade human ghrelin (C149H249N47O42, molecular weight

(MW) = 3370.9) was purchased from CLINALFA, a subsidiary of Merck Biosci-

ences AG (Laufelfingen, Switzerland). Manufactured according to GMP regu-

lations, the peptide was sterile and pyrogen free. The hormone was lyophilized

in individual 100 mg glass vials and intended for intravenous infusion to human

subjects.

Subjects

Twenty healthy medication-free normal weight male subjects were recruited.

Twelve subjects participated in the control/ghrelin part of the study (mean

age ± SEM, 24.1 years ± 1.1; body mass index, 22.2 ± 0.5). Eight took part

in the control/control study in which no ghrelin was administered (mean age,

23.2 yrs ± 1.3; body mass index, 22.3 ± 0.7). All were right-handed with normal

or corrected-to-normal vision. Exclusion criteria included one or more of the

following: history of neurologic or psychiatric illness, body mass index >

25.9 or < 19, tobacco use, diabetes, gastrointestinal or eating disorders,

food allergies, vegetarianism, and/or contraindications for MRI scanning.
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The Dutch Eating Behavior Questionnaire (Van Strien et al., 1986), the Three

Factor Eating Questionnaire (Stunkard and Messick, 1985), the Eating

Attitudes Test (Garner et al., 1991), and the eating-related section of the Struc-

tured Clinical Interview for DSM-IV Screening Module (First et al., 1995) were

used to exclude potential subjects with abnormal eating behavior. This

research protocol was approved by the Montreal Neurological Institute

Research Ethics Board as well as by the Therapeutic Products Directorate

of the Canadian government. Prior to the experiment, subjects were given a

description of the paradigm and provided written informed consent.

Experimental Paradigm

All subjects underwent a single fMRI session at the Montreal Neurological In-

stitute. On testing day, participants ate a standard test breakfast provided by

us (125 ml orange juice, 42 g cheddar cheese, 2 slices toasted bread: 1 white

and 1 whole wheat, 15 ml strawberry jam, 10 ml butter, 1 cup coffee with 20 ml

2% milk and 1 sachet white sugar) following a 12 hr overnight fast. Breakfast

was taken at either 8 a.m. (n = 10) or 10 a.m. (n = 10), in our cafeteria, accom-

panied by one of the investigators. All subjects consumed the entire breakfast

and finished eating within 30 min. Visual analog scales rating hunger and mood

were completed both before and after breakfast.

The imaging study was initiated 3 hr after the standardized breakfast to

ensure that subjects were neither full nor hungry and lasted approximately

65 min. Ghrelin levels are at a nadir at this time (Cummings et al., 2001). Prior

to subjects’ placement in the scanner, an intravenous catheter was inserted

into a left forearm vein and kept permeable with a slow infusion of normal saline.

Following a high-resolution structural scan, the functional scanning began. The

functional protocol was divided into two blocks (Figure 1). The first block

entailed three 5 min functional runs (runs 1–3). During each run, 15 images

(7–8 food, 7–8 scenery) were presented in random order. Subjects were in-

structed to focus their attention on the stimuli. Each picture was shown for 5 s

followed by a 15 s dark screen with a central fixation cross. A total of 45 im-

ages were displayed (22 food, 23 scenery). At the start and end of the block,

subjects answered questions regarding their mood and appetite (e.g., how

hungry are you right now?) on a 10 point visual analog scale. Responses

were recorded using an MRI-compatible mouse-like device. Images and ques-

tions were displayed on a projector screen using Presentation software (version

9.60, Neurobehavioral Systems, CA, USA). Food and scenery pictures had

been previously matched for visual appeal. The mean pleasantness ratings

on a scale of 1–9 were, for food, 6.54 (SD: 1.55) and, for scenery, 6.57 (SD: 1.48).

Following the first image acquisition block there was a 20 min period

for ghrelin infusion during which no stimuli were presented. Subjects in the

control/ghrelin group received two ghrelin infusions (0.5 mg/kg in normal saline

infused over 60 s each time) approximately 13 min apart, in single-blinded

fashion. Subjects in the control/control group did not. Prior to scanning sub-

jects had been told they might or might not receive ghrelin during the scan

but not when this would occur if it did. The ghrelin was administered via the

intravenous tubing from outside the scanner by an investigator who was not

visible to the subjects. There was no change in the flow rate or temperature

of the intravenous solution during ghrelin infusion.

The second block was identical to the first, consisting of three 5 min

functional runs, except that different stimuli were used (23 food, 22 scenery).

Questions regarding mood and appetite were again administered at the begin-

ning and end of the block. All subjects viewed the same set of images. Pictures

were presented in random order and no stimuli were repeated. Blood samples

were collected just before the scanning started and as soon as it ended to

quantify glucose, insulin, and growth hormone levels.

Finally, two post-scan tasks were administered to the subjects on a personal

computer approximately 30 min later. First, subjects were shown all 45 food im-

ages that they had viewed in the scanner intermixed with 26 novel food images

and were asked to state whether or not they had seen each image while in the

scanner. This recognition task was performed to ensure that subjects were pay-

ing attention to the images during the scan. Second, they were asked to rate the

images on a scale of 1 to 9 (1 = ‘‘extremely dislike’’ and 9 = ‘‘extremely like’’).

Imaging Parameters

Functional imaging data were acquired on a 1.5T Siemens Vision MRI scanner

equipped with a quadrature radiofrequency head coil. Head motion was min-

imized with a vacuum cushion. First, high-resolution T1-weighted anatomical
images were obtained. Thereafter, T2* weighted images with BOLD contrast

were acquired. Thirty-two 4 mm thick slices that covered the whole brain

were collected using the following parameters: TR: 3 s, TE: 40 ms, FOV:

256 mm, flip angle: 90�, and voxel size: 4 3 4 3 4 mm. The functional session

consisted of six runs of 5 min (three control and three ghrelin, or three control 1

and three control 2), each consisting of 100 volumes per run. Food and scenery

pictures were projected onto a screen in the scanner room and viewed through

a mirror mounted on the head coil. Scanning time and stimulus presentation

were synchronized by a trigger signal from the scanner at the beginning of

every run. Two dummy images were taken at the onset of each sequence

and discarded to reduce non-steady state effects.

Data Analysis

Functional images were spatially smoothed with a 6 mm Gaussian filter and

motion corrected prior to statistical analyses. A general linear model was de-

signed using separate regressors for food and scenery pictures, consisting of

boxcar functions convolved with a standard hemodynamic response function.

Regional brain activation was determined by calculating a contrast of food mi-

nus scenery and computing effect and standard deviation at each brain voxel

for each individual. These parametric images were transformed into Montreal

Neurological Institute space (Collins et al., 1994) and a group analysis was per-

formed using a mixed effects statistical model. The software package fmristat

was used to conduct the statistical analysis (Worsley et al., 2002). The basic

method is to calculate a t statistic from the effect size and standard deviation

of the general linear model for each individual. The t value at each voxel is

a measure of the likelihood that there was greater BOLD signal in response

to the food than the scenery pictures at that location in the brain. Thus

a t map is generated. This map is then thresholded in order to correct for mul-

tiple comparisons based on the search volume (the entire brain), the amount of

smoothing applied, and the degrees of freedom. Here we corrected for multiple

comparisons by only listing brain regions containing clusters of voxels with

p < 0.001 and a volume greater than 100 ml. This effectively reduces the risk

of false positives to less than 1 in 20 (i.e., p < 0.05) for the experiment. Signifi-

cant peaks are listed in the tables along with the t values and the locations of the

peaks, expressed in Montreal Neurological Institute coordinates based on the

stereotaxic atlas of Talairach and Tournoux (Talairach and Tournoux, 1988).

To confirm the significance of the ghrelin effect we performed an analysis of

the interaction between group and condition. We did this by generating a t map

of the following effect: ([ghrelin� control]� [control 2� control 1]). Finally, we

also created a t map of the response to scenery pictures minus the response to

the blank screen to ensure that ghrelin did not have a nonspecific effect on

attention or arousal. We compared activation to the scenery pictures in the

ghrelin and control states.

The effect sizes from the general linear model were also extracted from the

peak voxels of areas of significant activation to food pictures, so that the ghre-

lin and control conditions could be compared and correlated with behavioral

data. Behavioral and hormonal data were analyzed using SPSS (SPSS Inc.,

IL, USA). A paired t test was used to compare these measures in the ghrelin

and control conditions.

SUPPLEMENTAL DATA

Supplemental Data include Supplemental Experimental Procedures, three fig-

ures, and three tables and can be found with this article online at http://www.

cellmetabolism.org/cgi/content/full/7/5/400/DC1/.
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